Jump to Footer

Faculty

Kirsti Wash

Assistant Professor of Mathematics
Education:
PhD, Clemson University
BS, University of Texas at Austin
Office: H-309A
413-782-1275
CURRICULUM VITAE
INTERESTS
PUBLICATIONS

Journal Articles

B. Bresar, S. Klavzar, D.F. Rall, and K. Wash (2017 ). Packing chromatic number versus chromatic and clique number . Aequationes Mathematicae ,accepted

C. Cooper and K. Wash (2017 ). t-tone colorings in the Cartesian product . Congressus Numerantium ,accepted

S.E. Anderson, S. Nagpal, and K. Wash (2017 ). Domination in the hierarchical product and Vizing's conjecture . Discrete Math. ,accepted

B.L. Hartnell, D.F. Rall, and K. Wash (2017 ). On well-covered Cartesian products . submitted

B. Bresar, S. Klavzar, D.F. Rall, and K. Wash (2017 ). Packing chromatic number, (1,1,2,2)-colorings, and characterizing the Petersen graphs . Aequationes mathematicae ,91 , 169-184.

B. Bresar, S. Klavzar, D.F. Rall, and K. Wash (2017 ). Packing chromatic number under local changes in a graph . Discrete Math. ,340 , 1110-1115.

M.A. Henning and K. Wash (2017 ). Matchings, path covers, and domination . Discrete Math. ,340 , 3207-3216.

D.F. Rall and K. Wash (2017 ). On minimum identifying codes in some Cartesian product graphs . Graphs and Combin. ,33 , 1037-1053.

P.S. Skardal and K. Wash (2016 ). Spectral properties of the hierarchical product of graphs . Physical Review E ,94

J.P.Georges, D. Mauro, and K. Wash (2016 ). On zero-sum Z_{2j}^k-magic labelings . J. Combin. Optim. , DOI: 10.1007/s10878-016-0069-x.

M.A. Henning and K. Wash (2015 ). Trees with large neighborhood total domination number . Discrete Applied Math. ,187 , 96-102.

J. Loe, D. Middlebrooks, A. Morris, and K. Wash (2015 ). 2-tone colorings in graph products . Discuss. Math. Graph Theory ,35 , 55-72.

W. Goddard, K. Wash, and H. Xu (2015 ). WORM colorings . Discuss. Math. Graph Theory ,35 , 571-584.

K. Wash (2014 ). Edgeless graphs are the only universal fixers . Czech. Math. ,64 , 833-843.

D.F. Rall and K. Wash (2014 ). Identifying codes of the direct product of two cliques . European J. of Combin. ,36 , 159-171.

W. Goddard and K. Wash (2013 ). ID codes in Cartesian product of cliques . J. Combin. Math. Combin. Comp. ,85 , 97-106.